Rectifying rectifier channels in Huntington disease

نویسندگان

  • Juliane Proft
  • Norbert Weiss
چکیده

Neuronal abnormalities in neurodegenerative disorders such as Huntington disease, Alzheimer disease or Parkinson disease have been the primary focus of decades of research. However, increasing evidences indicate that glial cells and more specifically astrocytes could be as important players as their big brother. It is now particularly evident in Huntington disease where astrocytal potassium channels have emerged as a likely key factor in the pathogenesis of the disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-dependent ion channels in the mouse RPE: Comparison with Norrie disease mice

We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Exp...

متن کامل

Inhibitory interactions between two inward rectifier K+ channel subunits mediated by the transmembrane domains.

Inwardly rectifying K+ channel subunits may form homomeric or heteromeric channels with distinct functional properties. Hyperpolarizing commands delivered to Xenopus oocytes expressing homomeric Kir 4.1 channels evoke inwardly rectifying K+ currents which activate rapidly and undergo a pronounced decay at more hyperpolarized potentials. In addition, Kir 4.1 subunits form heteromeric channels wh...

متن کامل

Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons.

Inwardly rectifying K+ (IRK) channels are critical for shaping cell excitability. Whole-cell patch-clamp and single-cell RT-PCR techniques were used to characterize the inwardly rectifying K+ currents found in projection neurons of the rat nucleus accumbens. Inwardly rectifying currents were highly selective for K+ and blocked by low millimolar concentrations of Cs+ or Ba2+. In a subset of neur...

متن کامل

Pharmacological Conversion of a Cardiac Inward Rectifier into an Outward Rectifier Potassium Channel.

Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at dep...

متن کامل

Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel

Inwardly rectifying K+ channels conduct more inward than outward current as a result of voltage-dependent block of the channel pore by intracellular Mg2+ and polyamines. We investigated the molecular mechanism and structural determinants of inward rectification and ion permeation in a strongly rectifying channel, IRK1. Block by Mg2+ and polyamines is found not to conform to one-to-one binding, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014